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Abstract

This paper shows a general non-parametric unfolding technique for maximizing the

correct classification of binary choice or two-category data.  The motivation for and the

primary focus of the unfolding technique is parliamentary roll call voting data.  However,

the procedures that implement the unfolding also can be applied to the problem of

unfolding rank order data as well as analyzing a data set that would normally be the

subject of a probit, logit, or linear probability analysis.

To unfold binary choice data two subproblems must be solved.  First, given a set

of chooser or legislator points a cutting plane must be found such that it divides the

legislators/choosers into two sets that reproduce the actual choices as closely as possible.

Second, given a set of cutting planes for the binary choices a point for each chooser or

legislator must be found which reproduces the actual choices as closely as possible.

Solutions for these two problems are shown in this paper.  Monte-Carlo tests of the

procedure shows it to be highly accurate in the presence of error and missing data.
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1.  Introduction

The purpose of this paper is to show a general non-parametric unfolding technique

for maximizing the correct classification of binary choice or two-category data.  The

unfolding technique is non-parametric because the only assumptions made are that the

choice space is Euclidean and that individuals making choices behave as if they utilize

symmetric, single-peaked preferences. Other than these assumptions, no assumptions are

made about the functional form of individuals’ preferences and no assumptions are made

about the distributional form of individuals’ errors in making choices.  The motivation for

and the primary focus of the unfolding technique is parliamentary roll call voting data but

the procedures that implement the unfolding also can be used to solve the problem of

unfolding rank order data.

A roll call vote in a legislative assembly using standard parliamentary rules consists

of each legislator casting a Yes (Yea) or No (Nay) vote on the motion on the floor.

Typically, if the motion fails the status quo prevails.  Consequently, each roll call vote can

be considered to be a choice between two policy outcomes – one corresponding to Yea

and one corresponding to Nay – and roll calls can have policy outcomes in common (e.g.,

an amendment to a bill, an amendment to an amendment, a motion to table, etc.).

Let s denote the number of policy dimensions, which are indexed by k=1,… ,s; let p

denote the number of legislators (i=1,… ,p); and q denote the number of roll call votes

(j=1,… ,q).  Let X be the p by s matrix of legislator coordinates, and let T be the p by q

matrix of observed choices.  The choices will simply be Yea or Nay and will be

represented as “y” and “n” respectively.  T can contain missing entries.  Because
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legislators are assumed to have symmetric single-peaked preferences around their ideal

points, if there were no error they would vote for the alternative closest to them in the

policy space on any roll call.

In the perfect case, an s-dimensional hyperplane that is both perpendicular to the

line joining the Yea and Nay policy points and passes through the midpoint of the Yea and

Nay policy points, separates the legislators voting Yea from the legislators voting Nay.

The normal vector to this cutting plane is parallel to the line joining the Yea and Nay

policy points.  Note that, in the case of perfect voting, the policy points are not identified –

any pair of points on a line perpendicular to the plane that are on opposite sides and

equidistant from the plane would produce the same pattern of votes.  However, the

cutting plane is identified.  Hence this is an unfolding which recovers points representing

the legislators and implicitly pairs of points for each roll call vote albeit only in the form of

the cutting planes which pass between the pairs of points.1

A plane is defined as z′n = v′n where z, n, and v are s by 1 vectors and the plane

consists of all points z such that (z - v) is perpendicular to the normal vector, n, and v is

some point in the plane.  In this context, the problem is to solve for the normal vector, n.

(Given n, as shown below, it is simple to find the point on n through which the plane

passes.)  Let N be the q by s matrix of normal vectors for the q cutting planes.  Given the

number of dimensions, s, the classification problem consists of finding estimates of X and

N, denoted as X* and N* respectively, which maximize the correct classifications.

In sum, only two basic assumptions are made:  1) the choice space is Euclidean;

and 2) the individuals making choices behave as if they utilize symmetric, single-peaked

preferences.  Consequently, given a matrix of roll calls, the non-parametric unfolding
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problem consists of finding a set of legislator points and a set of cutting planes

corresponding to each binary choice in an Euclidean space of s dimensions such that each

cutting plane divides the legislators into two sets that reproduce the actual choices as

closely as possible.

In one dimension this consists of finding a joint rank ordering of the legislators and

roll call midpoints (ties are permitted, an example is shown in Table 7 below) that

maximizes correct classification.  The one-dimensional scaling procedure resembles

classical Guttman scaling (see Figure 2).  Given a rank order of legislators, the global

maximum in classification can be found for every roll call.  Similarly, given a rank order of

the roll call midpoints, the global maximum in classification can be found for every

legislator.  The two are symmetric in one dimension.

In two or more dimensions this symmetry disappears.  For example, in two

dimensions, q cutting lines create a maximum of q(q-1)/2 + q + 1 regions (Coombs, 1964,

p. 262) with each region corresponding to a voting pattern – e.g., yynnynyn… nn – on the

q roll calls.  The problem is to place each legislator in a region that best matches the

legislator’s observed pattern of roll call votes.  Given the legislator points, the problem is

to find a cutting line for each roll call that divides those legislators voting Yea from those

voting Nay such that correct classification is maximized.  Solutions for these two problems

are shown in the next two sections.

When the number of legislators is 100 or greater and the number of roll calls is on

the order of 500 – typical of national legislatures, for example, the U.S. Senate – then the

recovery of the legislators and cutting lines is very precise.  With 500 roll calls, there are a

maximum 125,251 regions in two dimensions and over 20,000,000 in three dimensions.
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Most of these regions are so small that a typical legislator’s point is very precisely pinned

down.  In fact the recovery of the legislator coordinates is virtually identical to those

recovered by parametric procedures that must make strong assumptions about the

interpersonal comparability of individuals’ utility and the function form of the error

distribution (e.g., Heckman and Snyder, 1997; Poole and Rosenthal, 1997).

The non-parametric unfolding technique developed below can also be used to

analyze the general rank ordering problem.  Suppose we have the rank orders over a set of

stimuli from a group of individuals.  For example, for 6 alternatives:

1.  A>B>D>F>C>E

2.  B>C>D>A>E>F

3. C>A>B>D>F>E

             Etc.

p.  D>A>C>F>E>B

The individual rank orders can be converted into roll call data by viewing the stimuli as

“voting” between pairs of individuals.  Namely, for each pair of individuals, let the

stimulus vote for the individual who has the stimulus higher in her ordering.  For example,

consider individuals 1 and 2 shown above.  Let “Yea” be a vote for individual 1 and “Nay”

be a vote for individual 2.  Stimulus A would vote Yea, B Nay, C Nay, D would abstain, E

Nay, and F Yea.  This produces a q by p(p-1)/2 matrix of “roll calls”.  The unfolding

technique will recover points representing the stimuli and cutting planes between each pair

of individuals.  The estimates of the stimuli will be very precise using this technique.  An

example is shown in Section 5.
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Sections 2-4 develop the non-parametric unfolding procedure.  Section 2 shows a

solution for finding the optimal cutting plane given a configuration of legislators, section 3

shows a solution for finding the optimal legislator point given a set of cutting planes, and

section 4 shows Monte-Carlo tests of the unfolding procedure.  Empirical applications are

shown in Section 5.

2.  Finding the Optimal Cutting Plane

Given the p by s matrix, X, of legislator coordinates and the p by 1 vector of votes

on the jth roll call, t, the problem is to find the plane that divides the legislators into two

groups such that the number of correct classifications is maximized.  Figure 1 shows an

example in two dimensions.

__________________
 Figure 1 about Here

__________________

Figure 1 illustrates the fact that the cutting plane problem is equivalent to finding a

vector – in this case, n – such that when the legislator points are projected onto the vector

a cutting point can be found that maximizes the correct classifications.  By definition, all

points in the cutting plane are projected onto this cutting point.  The problem has two

distinct parts.  First, given an estimated normal vector, the plane perpendicular to the

normal vector which maximizes correct classifications must be found; and second, given

an estimated cutting plane, the orientation of the plane in the space must be changed so

that a better estimate of the normal vector is found.
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Calculating the Correct Classifications

Let the legislator coordinates lie within the s dimensional unit hypersphere and let

the origin of the space be placed at the centroid of the legislator coordinates; that is, let

x  1ik
2

k=

s

1
∑ ≤    , i=1,...,p     and     x  0ik

i=

p

1
∑ =    , k=1,...,s

In addition, let nj be the normal vector for the jth roll call that maximizes correct

classifications.  Without loss of generality nj can be constrained to be of unit length; i. e.,

nj′nj = 1.  The projections (see Figure 1B) are, therefore:

                                                           Xnj = w                                                (1)

Note that the elements in the p-length vector, w , range from -1 to +1.  The elements in w

all lie on a line that passes through the origin of the s-dimensional unit hypersphere in the

direction of the normal vector with exit points -nj and +nj respectively.  Hereafter, this will

be referred to as the projection line.

Let nj* be an estimate of nj and let w* be the corresponding estimate of w.  The

correct classifications associated with nj* can be calculated quite easily.  Figure 2

illustrates the method.

__________________
 Figure 2 about Here

__________________

For ease of exposition, let the projected legislator coordinates from left to right be

denoted in order as w1 to wp such that -1 ≤ w1 ≤ w2  ≤ w3 ≤ ... ≤ wp ≤ +1 and the “y”s and

“n”s above the projection line in the Figure indicate how the corresponding legislators

voted on the jth roll call.  There are p+1 possible regions that the cutting point could be in

-- (-1, w1), (w1 , w2), ... , (wp , +1) -- and for each region there are exactly 2 possible
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perfect voting patterns for an overall total of 2(p+1) possible perfect voting patterns.

However, region (wp , +1) is redundant since it produces the same perfect patterns as the

region (-1 , w1) so it may be discarded leaving 2p unique perfect voting patterns to

consider.

Since there are only 2p perfect patterns, it is a simple matter to compare each

perfect pattern with the actual pattern of votes, tj.  This can be done very efficiently by

first assuming that the cutting point is in the region (-1 , w1) and calculating the

corresponding number of correct classifications.  Next assume that the cutting point is in

the region (w1 , w2).  Only one calculation has to be made to get the correct classifications

for this cutting point since the only change is that the cutting point has been moved from

the left of w2 to the right of w2.  If there is no missing data, either the correct classification

increases by 1 or decreases by 1 when the cutting point is moved from the left of w2 to the

right of w2.  Similar reasoning holds for the remaining points.  For each possible cutting

point the correct classification corresponding to the two possible perfect patterns can be

calculated.  The estimated cutting point is set equal to the midpoint of the region for

which correct classification is a maximum.  For the example shown in Figure 2, placing the

cutting point at the position of any of the three asterisks would produce only two

classification errors for a correct classification of p-2.

Note that this process is equivalent to moving the cutting plane through the unit

hypersphere along the estimated normal vector, nj
*.

Calculating the Optimal Normal Vector

Let c* denote the cutting point that maximizes correct classification on the

projection line formed by the elements of Xnj* = w* .  The point c* is therefore:
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                                                  z′nj* = v′nj* = c*                                             (2)

Given nj* and c*, the estimated cutting plane consists of all points v satisfying

equation (2).  In order to get a new estimate of nj , the estimated cutting plane given by

equation (2) must be moved through the space in a direction that increases correct

classification.  This is accomplished by moving the cutting plane towards the legislator

points that are classification errors.

To do this, a matrix is created by projecting all the correctly classified legislator

points onto the surface of the cutting plane while leaving the incorrectly classified

legislators at their original positions.  In two dimensions this produces a line through the

space made up of correctly classified legislators (the current cutting plane) around which

is a scattering of points corresponding to the incorrectly classified legislators (see Figure

3).  Specifically, let xi be the s by 1 vector denoting the ith legislator’s point in the space

and let wi be the corresponding point on the projection line from equation (1).  Construct

a p by s matrix, V, as follows:  if legislator i is correctly classified, then her point is

projected onto the cutting plane and that point becomes the ith row of V;  if legislator i is

incorrectly classified, then her point remains at its original position and that point becomes

the ith row of V.  That is:

vi = xi + (c* - wi)nj*   if correctly classified
(3)

vi = xi                          if incorrectly classified

__________________
 Figure 3 about Here

__________________
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Without loss of generality, the centroid of V can be placed at the origin.  That is,

let m be the s length vector of the means of V, and let Jp be a p by 1 vector of ones.

Define V* as

V* = V - Jpm′                                                       (4)

Panel A of Figure 3 shows a vote in two dimensions which would be perfectly

classified by the indicated cutting line.  Panel B shows the V* produced by using an initial

estimate of nj*′ = (0 , 1) -- that is, an estimated normal vector perpendicular to the true

normal vector.  All the “y” and “n” tokens off the plane are classification errors.  Clearly,

if the plane were moved counter-clockwise towards the errors a better fit would be

obtained.

This is accomplished by using the Eckart and Young (1936) lower-rank-matrix

approximation theorem.  Let the singular value decomposition of V* be

V* = UΛΘ ′                                                      (5)

where U is a p by s orthogonal matrix, Θ  is an s by s orthogonal matrix, and Λ is an s by s

diagonal matrix containing the singular values in descending order on the diagonal.

By the Eckart-Young theorem, the best fitting line through the scatterplot shown

in panel B of Figure 3 is found by inserting a zero in place of the second singular value in

Λ and remultiplying.  That is, let Λ# be the s by s diagonal matrix identical to Λ except for

the replacement of the sth singular value by zero, then the estimated hyperplane is:

V# = UΛ#Θ ′                                                    (6)

where V# will be of rank s-1 by construction.
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Let nj
# be the normal vector of the hyperplane defined by V# and let θs be the sth

singular vector of Θ  .  It is straightforward to show that nj
# = θs .  By the definition of a

plane:

V#nj
# = Jpc#                                               (7)

where Jp is a p by 1 vector of ones and c# is a constant.  Recall from equation (4) that

                                               v  0ik
*

i=

p

1
∑ =    , k=1,...,s

Hence,

                                               v  0ik
#

i=

p

1
∑ =    , k=1,...,s

because the singular vectors of U in equations (5) and (6) sum to zero.  Therefore, by

simply adding up all p elements of the vectors on either side of the equality in equation (7)

it must be the case that c# = 0.  This allows equation (7) to be rewritten as

UΛ#Θ ′nj
# = 0p                                                  (8)

where 0p is a p length vector of zeroes.  Let Λ#-1 be an s by s diagonal matrix with diagonal

entries that are the reciprocals of the non-zero diagonal entries of Λ# . Multiplying both

sides of equation (8) by Λ#-1U′

Λ#-1U′UΛ#Θ ′nj
# = Λ#-1U′0p

this reduces to

   Θ *′nj
# = 0s

where 0s is an s length vector of zeroes, and Θ * is identical to Θ  except the sth column of

Θ * is all zeroes (hence, the sth row of Θ *′ is all zeroes).  Now, nj
# cannot be a vector of

zeroes since, by definition, nj
#′ nj

# = 1.  Hence, nj
# = θs is a solution for equation (8).
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In sum, calculating the optimal nj consists of the following steps:

1)  Obtain a starting estimate of nj* using simple OLS (linear probability)

or two-group linear discriminate analysis.

2)  Calculate the correct classifications associated with nj* .

3)  Construct V* using equations (3) and (4).

4)  Perform singular value decomposition of V*, UΛΘ ′ .

5)  Use the sth singular vector of Θ  , θs , as the new estimate of nj .

6)  Go to (2).

In a perfect case like that shown in Figure 3, this cutting plane procedure will

almost always quickly iterate into the true cutting plane.  Two group linear discriminant

analysis produces a very good starting estimate for nj* -- correct classification is almost

always about 90 percent (OLS yields nearly identical starting estimates).  With perfect

data, the rate of convergence is a function of the number of errors.  As the number of

errors decreases, the mass of the correctly classified choices increases thereby producing

very small changes in the newly estimated normal vectors.  The procedure is stopped when

the sum of squared differences in nj* divided by s changes less than .0001 between

iterations.

Table 1A shows a Monte-Carlo study of the cutting plane procedure using perfect

data for 100 legislators and 500 roll calls for 2 through 10 dimensions and Table 1B shows

a Monte-Carlo study of contaminated data in 1 to 3 dimensions with varying error levels

and types of error.  Results for one dimension are not shown in Table 1A since correct

classification will always be 100% if perfect data is used.  The 100 legislators and 500

pairs of policy points were randomly drawn from a uniform distribution through the unit
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hypersphere.  The policy points were randomly drawn but in such a way so as to produce

an average majority margin of about 67 percent (typical of U. S. congressional roll call

data – see Table 6).  A maximum of 50 iterations through steps (2) - (5) above were

allowed.

__________________
 Table 1 about Here

__________________

The cutting plane procedure performs very well.  The number of dimensions does

not appear to play any role in the accuracy of the procedure.  For example, for the ten

trials in 10 dimensions, the 5000 total estimated nj*’s correctly classified 499,936 of

500,000 choices (99.99 percent).  With 100 legislators the recovery of the true normal

vectors is quite good.  In two dimensions, the average of the cosines computed between

the true normal vectors and the estimated normal vectors is .998 for all roll calls and .999

for roll calls with at least 10 percent in the minority (90-10 or better).  This average cosine

falls as the number of dimensions is increased because of the simple fact that there is more

space between the legislators so that the cutting planes can be moved slightly without

affecting the classification, but even at ten dimensions the recovery is quite good.  Note

that, in four or less dimensions – the dimensionality of most practical applications -- the

recovery is almost exact.

Error was introduced by making the legislator choices probabilistic such that the

further a legislator is from the cutting plane, the less likely the legislator will make a voting

error.  Specifically, an indirect utility function for each legislator was created -- uij. + εij. –

where uij. is the deterministic portion of the utility function and εij. is the stochastic

portion.  The deterministic portion is assumed to be an exponential function of the



14

negative of the squared distance from the legislator to the “y” and “n” alternatives and εijy

and εijn were drawn from the Normal, Uniform, and Logit distributions, respectively.

Table 1B shows that the procedure does a good job correctly classifying the true

roll call choices and recovering the true normal vectors – especially at the 15 percent error

level which is the approximate level of the error found in the U.S. Congressional roll call

data.2  Finally, as one would expect, increasing the number of legislators increases the

accuracy of the recovery.

When error is present the cutting plane procedure converges very quickly.  An

example is shown in Figure 4 that uses the same configuration of legislator ideal points as

Figure 3.  The choices of 78 of the 435 legislators have been modified so that they are

“errors” – “N’s” on the “Y” side of the true cutting line and “Y’s” on the “N” side of the

true cutting line.  The cutting plane procedure converges on the 30th iteration as shown in

Panel D.  As shown by Panels B and C, in the error case the converged cutting plane may

not be the one that maximizes classification – however, it will invariably be very close to

the optimal cutting plane.  This is easily dealt with by simply storing the iteration record

and using the normal vector corresponding to the best classification.  This works very well

in practice.

__________________
 Figure 4 about Here

__________________

Relationship With Probit and Manski’s Maximum Score Estimator

Given a simple two category dependent variable and a set of fixed independent

variables, the cutting plane procedure can be used to estimate a vector of coefficients for

the independent variables that maximizes correct classification of the dependent variable.
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In this instance, with the independent variables scaled so as to lie within a unit

hypersphere, the normal vector, nj*, produced by the cutting plane procedure, plays the

role of the coefficient vector, β, in a standard Probit, Logit, or linear probability analysis.

For example, in a Probit analysis, if the estimated β’s for the independent variables,

β1 , β2 , …  , βs , are normalized so that their sum of squares is equal to one, then they

constitute a normal vector to a plane upon which the choice probabilities are exactly .5/.5.

That is, in terms of Figure 1, all the points on the cutting plane have choice probabilities of

.5/.5 and are projected onto the projection line at the cutting point, c*, which is

determined by the intercept term, β0 .  In this context, the normal vector is the direction of

maximum increase/decrease in probability and the 1/σ in the standard Probit expression

determines how rapidly the probability rises/falls along the normal vector from the cutting

plane to the rim of the hypersphere; that is from c* to -nj and +nj.

The cutting plane procedure can also be viewed as a method of implementing

Manski’s Maximum Score Estimator (see Manski, 1975, 1985; Manski and Thompson,

1986).  In its simplest form the Maximum Score Estimator chooses β to maximize correct

classification.  Part of the MSE process is very similar to the part of the cutting plane

procedure illustrated by Figure 2.  Namely, given a direction, it is easy to find the

classification maximum (Manski and Thompson, 1986, pp. 89-90).  However, the MSE

approach has no method other than exhaustive search to find a better direction through the

space.

Intuitively, in terms of the notation developed above, the MSE algorithm consists

of two phases.  First, given nj* , the cutpoint, c* is found.  Second, let nj
1 , nj

2 , nj
3 , … ,

nj
s-1 , be a set of normal vectors orthogonal to nj* , the algorithm then searches along
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these orthogonal vectors for a better solution than the current solution.  Unlike the cutting

plane procedure that uses equations (3) and (6) to arrive at a better solution for the normal

vector, the MSE algorithm has no systematic criterion for selecting a better search

direction (Greene, 1993, pp. 658-659).3

3.  Finding the Optimal Legislator Coordinates

Given the q by s matrix, N, of normal vectors and the q by 1 vector of votes of the

ith legislator, ti, the problem is to find the legislator point, xi, which maximizes the correct

classification.  Figure 5 shows an example in two dimensions.

__________________
 Figure 5 about Here

__________________

Figure 5 shows five cutting lines indicated by the numbering at the rim of the

circle.  The “Y” and “N” on either side of each cutting line indicates how a legislator on

that side of the cutting line should vote – “yea” or “nay” respectively.  The maximum

number of regions created by five cutting lines in two dimensions is 16 and each of these

16 regions can be characterized by a unique vector of votes.  Figure 5 only shows 13

regions to emphasize the practical issue that in real world data not all of the theoretically

possible regions will be present.  For example, cutting lines 2 and 5 intersect outside the

circle so that a legislator who voted “y” on both cannot be placed inside the circle without

a classification error.  In practice, the restriction that the legislator points lie within a unit

hypersphere does not pose a problem since the legislator points and cutting planes are

iteratively adjusted to maximize correct classification.  In this case, if the data were perfect
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and two dimensional, the procedure would move the legislator points in such a way that

lines 2 and 5 would intersect inside the circle (see Table 4).

Given a legislator’s pattern of votes, in this case nnnyn (technically, ti′ = [nnnyn]),

the problem is to find the region in Figure 5 that maximizes the correct classification.  In

this example the point “C” is located in the region corresponding to perfect classification.

Suppose the initial estimate of the legislator’s coordinates is at the origin, point “A” in the

Figure.  This initial estimate is very poor as it only correctly classifies one of the five

votes.  The problem is to move the point representing the legislator in a direction that

increases the number of correct classifications.

Below a method is shown for finding the maximum classification point along any

arbitrary line passing through the space.  This method is used to move the legislator point

through the space in a city-block fashion by searching along a line parallel to the first

dimension and then solving for the point along this line that maximizes classification.

Then the legislator point is moved along a line through this new point but parallel to the

second dimension.  This is done for each dimension in turn and can be repeated as many

times as desired.  This always converges to a point for which the coordinates are at a local

maximum in terms of classification.  That is, the point cannot be moved parallel to any

dimension and have the correct classifications increase.

Let xi
(h) be the initial estimate for legislator i where “h” is the iteration number (1,

2, 3, etc.) and let xi
(a) be a second point.  The problem is to find a new estimate, xi

(h+1), on

the line passing through xi
(h) and xi

(a) which increases correct classification.  Using equation

(1), the projection of xi
(h) onto the jth normal vector is:

xi
(h)′nj = wij

(h)                                       (9)
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Similarly, the projection of the second point onto the jth normal vector is wij
(a).  These

projections correspond to a correct classification on roll call j depending upon which side

of the cutpoint, cj, they fall.  There are six possible orderings of wij
(h), wij

(a), and cj.  For

each ordering there are two possible classification outcomes for a total of 12 cases.  Table

2 shows each case.

__________________
 Table 2 about Here

__________________

For example, in case 1 both xi
(h) and xi

(a) project to the right of cj and are on the

correct side of the cutting plane for the jth roll call and are therefore correctly classified.

Case 2 is the same geometrically only now xi
(h) and xi

(a) are on the wrong side of the

cutting plane and are therefore projected as classification errors.  Cases 1 to 8 represent

no change in classification from moving the legislator point from xi
(h) to xi

(a).  For xi
(a) to be

an improvement over xi
(h) , the number of cases 10 and 12 must be greater than the number

of cases 9 and 11.

Consider the effect of moving xi
(a) further from xi

(h) .  This has no effect on cases 1,

2, and 7 - 12.  Only those cases where xi
(a) is between xi

(h) and cj – cases 3, 4, 5, and 6 –

are affected.  Depending upon how far xi
(a) is moved away from xi

(h) , case 3 could change

to case 11 increasing the error by one, case 5 could change to case 9 also increasing the

error by one, case 4 could change to case 12 decreasing the error by one, and case 6 could

change to case 10 also decreasing the error by one.  A similar analysis of the effect of

moving xi
(a) towards xi

(h) can also be done.

More generally, consider the line equation:
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xi
(h+1) = xi

(h) + α(xi
(a) - xi

(h) )                                          (10)

which, when projected onto the jth normal vector, becomes:

wij
(h+1) = wij

(h) + α(wij
(a) - wij

(h) )                                    (11)

For a single roll call, it is easy to solve for α; these are shown in Table 2 for all 12 cases.

For example, for case 2, α must be chosen so that the projection of xi
(h+1) , wij

(h+1) , is in the

region (-1, cj ).

Given xi
(h) and xi

(a) , Table 2 can be used to find the limits of α for each roll call.

Let the upper and lower limits for the jth roll call be Uij and Lij respectively.  The correct

classification associated with xi
(h) can be obtained by setting α=0 and counting the number

of roll calls for which 0 ∈  (Lij , Uij ).  Similarly, the correct classification associated with

xi
(a) is obtained by setting α=1 and counting the number of roll calls for which 1 ∈  (Lij ,

Uij).  In general, define

δij = 1  if  α ∈  (Lij , Uij )

δij = 0  if  α ∉  (Lij , Uij )

and the correct classification is simply

δ(α) = δij
j=1

q

∑                                                        (12)

The α that maximizes δ(α) , the number of correct classifications, can be

calculated in a simple manner.  First, compute the Lij and Uij for each roll call.  Second,

rank order the Lij and Uij and use the classification algorithm described in section 2 to

calculate the optimal α.  Here the Lij play the role of “y” and the Uij play the role of “n”.

For example, if there exists an α that results in perfect classification, the ordering of L’s



20

and U’s will look like (dropping the i subscript to reduce clutter and numbering left to

right for convenience):

L1 < L2 < L3 < ... < Lq < U1 < U2 < U3 < ... < Uq

that is, all the Lj will be less than all the Uj.  In this example, perfect classification,

δ(α) = q , results from α ∈  (Lq , U1 ).

For example, using the configuration shown in Figure 5, the starting estimate (h=1)

xi
(1) , is placed at the origin – point “A” – and the second point, xi

(a) , is placed just to the

right of xi
(1) .  The resulting rank order of the upper and lower limits is:

 L1 < L5 < L3 < L2 < U3 < U2 < U1 < U5 < L4 < U4

The rank ordering is almost a perfect pattern in that 4 of the lower limits are below the 5

upper limits; only L4 is wrongly placed producing one classification error.  Consequently,

the point resulting from using α ∈  (L2 , U3 ) , xi
(2) , point “B” in Figure 5, only has one

classification error with 4 correct classifications.  (In practice, α is set equal to the

midpoint; in this case,(L2 + U3 )/2 .)  Note that in Figure 5 point “B” is on the wrong side

of the cutting line for roll call 4 in the region associated with the pattern nnnnn.

For the second iteration, h=2, the starting estimate is xi
(2) and the second point,

xi
(a), is placed just below xi

(2) so that the resulting line is parallel to the second dimension.

This produces the rank ordering:

L4 < L2 < L5 < L1 < L3 < U4 < U1 < U3 < U5 < U2

The rank ordering is now a perfect pattern with all 5 lower limits below the 5 upper limits

so that there are no classification errors.  The point resulting from using α ∈  (L3 , U4 ) ,

xi
(3) , point “C” in Figure 5, has 5 correct classifications and no classification error.
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The search for the optimal xi is conducted in a city-block manner.  If the starting

point is placed at the origin, then in the first iteration the search is along a line through the

origin with all but the first dimension coordinates in xi
(1) and xi

(a) set to zero.  In the second

iteration, the first dimension coordinates are all set equal to the value corresponding to the

optimal first dimension value and the 3rd, 4th, … , sth dimensional coordinates in xi
(2) and xi

(a)

remain at their original values of zero.  The search is along the corresponding line through

xi
(2) and xi

(a) which is orthogonal to the first dimension.  In the third iteration, the first and

second dimension coordinates are set equal to the optimal values from the first and second

iterations respectively, and the 4th, 5th, … , sth  dimensional coordinates in xi
(3) and xi

(a)

remain at their original values of zero.  The search is along the corresponding line through

xi
(3) and xi

(a) which is orthogonal to the second dimension.  This process continues in the

same fashion through the sth dimension.  Since the search for the optimal xi is being done

city-block-wise, dimensions 1 to s can now be searched again.

In sum, calculating the optimal xi consists of the following steps:

1)  Obtain a realistic starting estimate, xi
(1)  (or set xi

(1) equal to the origin,

 that is, xi
(1) = 0 ).

2)  Set xi
(a)′ = (0.01, xi2

(1) , xi3
(1) , xi4

(1) , xi5
(1) , …  , xis

(1) ) , find optimal α

and xi
(2) = xi

(1) + α(xi
(a) - xi

(1) )   .

3)  Set xi
(a)′ = (xi1

(2) , 0.01, xi3
(1) , xi4

(1) , xi5
(1) , …  , xis

(1) ) , find optimal α

and xi
(3) = xi

(2) + α(xi
(a) - xi

(2) ).

4)  Set xi
(a)′ = (xi1

(2) , xi2
(3) , 0.01, xi4

(1) , xi5
(1) , …  , xis

(1) ) , find optimal α

and xi
(4) = xi

(3) + α(xi
(a) - xi

(3) ).
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5)  Set xi
(a)′ = (xi1

(2) , xi2
(3) , xi3

(4) , 0.01, xi5
(1) , …  , xis

(1) ) , find optimal α

and xi
(5) = xi

(4) + α(xi
(a) - xi

(4) ).

 etc.

s+1)  Set xi
(a)′ = (xi1

(2) , xi2
(3) , xi3

(4) , xi4
(5) , …  , xis-1

(s) , 0.01) , find optimal

α and xi
(s+1) = xi

(s) + α(xi
(a) - xi

(s) ).

s+2)  Go to (2).

Note that classification error can never increase from one step to the next.  This is

true because setting α = 0 preserves the current value of classification.  This process

converges very quickly (usually less than 10 iterations through steps 2 to s+1 above) to a

vector of coordinates which is a local maximum in terms of classification.  That is, it

converges to a point such that α = 0 for all s dimensions.

In practice, the starting estimate, xi
(1) , and the second point, xi

(a) , could be placed

anywhere within the s dimensional unit hypersphere.  In practical applications the starting

estimate is not the origin; rather, realistic starting estimates for the xi
(1)‘s are obtained from

an eigenvector/eigenvector decomposition of the double-centered4 agreement score matrix

computed between legislators.  The first s eigenvectors normalized to lie in the unit

hypersphere are used as the starts.

If the line through xi
(h) and xi

(a) is parallel to a cutting line then the corresponding

difference between wij
(a) and wij

(h) , wij
(a) - wij

(h) , which is used in Table 2 to find αj, may be

equal to zero.  This presents no problem since if the line through xi
(h) and xi

(a) is parallel to

a cutting line then the classification on that roll call is the same no matter where on the line

xi
(h+1) is located.  Consequently, the roll call is not used to locate xi

(h+1) .  In addition, if the

line through wij
(a) and wij

(h) goes through the hypersphere so that it never intersects a
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cutting plane this can result in a value of αj that produces a point that lies outside the unit

hypersphere.  This is easily handled by computing the upper and lower feasible limits of

xi
(h+1) – that is, the values corresponding to the two exit points of the line from the unit

hypersphere – and discarding all the Lij and Uij outside the hypersphere.  This requires

some bookkeeping but it has no effect on the search process.  Finally, the search process

does not have to be done by moving orthogonally (i.e., city-block-wise) through the

hypersphere.  However, considerable experimentation shows that it is the most efficient

way to proceed.

To guard against bad local maxima (α=0 in s orthogonal directions), multiple

starting points for the xi
(1)‘s are utilized.  If different solutions are found (which are rare

and almost always close together) then the lines joining the unique local maxima are

searched for the best solution.  After considerable experimentation, 3 starting points were

found to work very well in practice.  One starting point is from the eigenvalue-eigenvector

decomposition of the double-centered agreement score matrix and the other two are

randomly generated.  After the first iteration, the legislator point from the previous

iteration is used as one of the starting points.

Table 3A shows a Monte-Carlo study of the legislator procedure using perfect data

– the true cutting planes are known -- for 100 legislators and 500 roll calls in 2 through 10

dimensions and Table 3B shows results for contaminated data following the same design

as that shown in Table 1B.  To make the test reasonably stringent, only “unreasonable”

starting points are used – namely, the origin and two randomly generated points.  Results

for one dimension are not shown since classification will always be 100% if perfect data is

used.  The 100 legislators and pairs of policy points were randomly drawn from a uniform
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distribution through the unit hypersphere.  The pairs of policy points were drawn in such a

way so as to produce cutting lines with an average majority margin of about 67 percent

(typical of U.S. congressional roll call data – see Table 6).  A maximum of 25 iterations

through steps (2) - (s+1) above were allowed.

__________________
 Table 3 about Here

__________________

The legislator procedure works very well – especially at 7 dimensions and below.

There is some deterioration in accuracy at 10 dimensions but it still only makes an average

of about 43 misclassifications out of 50,000 total choices.  For 5 dimensions and below it

is practically perfect.  Table 3 also shows the average Pearson squared correlations

between the true and reproduced legislator coordinates.  The average of the worst and

best r-squares for the s dimensions are shown.

These r-squares are very high.  Even though the legislator procedure is non-

parametric, with 500 roll call cutting planes, the unit hypersphere is chopped up into

enough regions that, in effect, metric (i.e., ratio scale) information is being extracted from

the roll call matrix.  In three dimensions with 500 roll calls, there is a theoretical maximum

of 20,833,751 regions created by the 500 cutting planes.  Obviously, even if only a

fraction of these regions are present, their average volume must be very small.

Table 3B is organized in the same fashion as Table 1B.  Not surprisingly, as the

number of cutting planes increases with the error level held fixed, the precision of the

recovery of the legislators increases dramatically.  Even at the very high error level of 25
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percent, with 500 roll calls in two or three dimensions the recovery of the legislator

coordinates is very good.

4.  Non-Parametric Unfolding of Binary Choice Matrices

The non-parametric unfolding algorithm consists of three phases:

1)  Generate starting values for X, X*, from an eigenvalue/eigenvector

decomposition of the legislator by legislator agreement score matrix.

2)  Given X*, find the optimal estimate of N, N*.

3)  Given N*, find the optimal X*.

4)  Go to (2).

Table 4 shows a Monte-Carlo study of the non-parametric unfolding algorithm

using perfect data for 100 legislators and 500 roll calls in 1 through 10 dimensions.  Only

roll calls with margins of 97-3 to 50-50 were used because unanimous and near-

unanimous roll calls trivially inflate the number of correct classifications.  A maximum of

25 iterations through steps (2) and (3) above were allowed.

__________________
 Table 4 about Here

__________________

The algorithm works well regardless of the number of dimensions.  The worst

result is for two dimensions where, on average, about 23 of 50,000 choices were

misclassified.  The accuracy of the recovery of the true configuration of legislators and the

true normal vectors declines after 3 dimensions but not very substantially.  Even at ten

dimensions the average worst Pearson r-square between the true and reproduced legislator

coordinates is .943.  For four and fewer dimensions, the recovery is very precise.
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The algorithm also works reasonably well when the dimensions are not equally

salient.  For example, in two dimensions if 85 percent of the cutting lines are nearly

parallel to the second dimension, the legislator configuration is recovered with reasonable

precision – the average r-squares for the first and second dimensions are .94 and .89,

respectively.  However, in real world applications where noise is present, such data will

look like it fits a one-dimension model.  Consequently, there is no substitute for the

researcher’s substantive understanding of the data.

Given the history of other multidimensional scaling techniques, most empirical

applications of the non-parametric unfolding technique shown here will be to data matrices

with missing entries and the estimated configurations will be in three or fewer dimensions.

Missing data presents no problem for the algorithm.  In the cutting plane procedure it

simply means that the total number of legislators may vary from vote to vote.  In the

legislator procedure it simply means that the number of cutting lines may vary from

legislator to legislator.  Handling missing data requires a little bookkeeping but it has no

effect on the algorithm.

Table 5 shows a set of experiments with and without error at various levels of

missing data.  Configurations of 100 legislators and 500 roll calls in 2 and 3 dimensions

were randomly generated in the same fashion as those used in the Monte-Carlo

experiments shown in Table 4.  Error was introduced into the choices by making them

probabilistic using the same method as in Table 3B.  An error level of about 20 percent

was chosen because it is somewhat above the approximate level of error in U.S.

congressional roll call data (Poole and Rosenthal, 1997).  Matrix entries were randomly

removed and the remaining entries were then analyzed by the algorithm in one through
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five dimensions.  The upper part of Table 5 shows two-dimensional experiments at four

different levels of missing data with and without error, and the lower part shows three-

dimensional experiments.  Each randomly produced matrix was analyzed at each level of

missing data so that the same 10 matrices for two or three dimensions (with varying levels

of missing entries) are being averaged in each row of the upper or lower parts of the

Table.

__________________
 Table 5 about Here

__________________

The accuracy of the recovery of the legislator configuration is quite good and only

begins to fall off at 70 percent missing entries.  With perfect data the procedure

unambiguously finds the true dimensionality.  With error there are clear “elbows” at the

true dimensionality.  The tendency for the correct classification to increase with the

percentage of missing data is due to the fact that with more missing data there are fewer

roll call cutting planes and hence a legislator’s position is not as constrained as it is with

complete data.  Indeed, the average largest distance to a boundary increases with the level

of missing data.  This tends to increase the correct classification and decrease the

correlation between the true and reproduced legislator configurations.  In any event, the

results shown in Table 5 suggest that the algorithm will perform well with real world data

at realistic levels of missing entries.  In particular, with 20 percent missing data there is no

appreciable deterioration in performance.
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5.  Empirical Examples

Non-Parametric Unfolding of U. S. Senate Roll Call Data

Roll call voting in the U.S. Congress has been extensively analyzed by researchers

using a wide variety of techniques.  This will facilitate the interpretation of the non-

parametric unfolding results.  Two-dimensional senator coordinates from the non-

parametric unfoldings will be compared with those produced by KYST, a multi-

dimensional scaling program developed by Kruskal, Young, and Seery (1973), and

NOMINATE, a maximum likelihood procedure developed by Poole and Rosenthal

(1997).

Table 6 reports the classification results for Senates 80 to 104 in one and two

dimensions for the non-parametric procedure.  These percentages are about 3 to 5

percentage points better than NOMINATE in both one and two dimensions (Poole and

Rosenthal, 1997, chapter 3).  This is not surprising given that the NOMINATE procedure

maximizes a likelihood function and does not attempt to maximize correct classifications.

__________________
 Table 6 about Here

__________________

Table 6 also shows the squared Pearson correlations between the estimated

dimensions of the non-parametric procedure and those produced by KYST and

NOMINATE, respectively, in two dimensions.  The non-parametric configuration was

rotated to best match the NOMINATE and KYST configurations using Schonemann’s

(1966) technique.  These r-squares are, for the most part, very high – most of the first

dimension r-squares are above .95 and the second dimension r-squares are mostly above
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.9.  R-squares were also computed for the Heckman-Snyder configurations.  These were

nearly the same as those reported for W-NOMINATE because the Heckman-Snyder and

NOMINATE configurations are highly correlated (Poole and Rosenthal, 1997, Appendix

B).  For example, the r-squares between the Heckman-Snyder configuration and the non-

parametric configuration for the 85th Senate (shown in Figure 6) are .973 and .944,

respectively.

Table 7 shows the estimated rank order from the one-dimensional scaling of the

104th Senate.  The ordering is from most liberal (1) to most conservative (103) and it

correctly classifies 90.0 percent of the choices (70,976 of 78,882).  Campbell of Colorado

switched from Democrat to Republican in April of 1995 so he appears twice (ranks 48 and

55).  If two or more senators tied in the ranking, the average of the associated ranks was

used.  For example, 85 senators were more liberal and 15 more conservative than the

threesome Mack (R-FL), Coverdell (R-GA), and Coats (R-IN), who were tied.

Consequently they all were assigned the average rank of 87.

__________________
 Table 7 about Here

__________________

The polarization of American politics (Poole and Rosenthal, 1997; King, 1998) is

evident from an inspection of the table.  There is no overlap of the two parties.

Campbell’s voting record as a Democrat made him the most conservative Democrat in the

Senate.  His conversion only moved him from 48th to 55th rank – from the right edge of the

Democratic party to the midst of the moderates of the Republican party.

Figure 6 shows the two dimensional configuration of senators for the 85th Senate

along with a histogram of the roll call cutting line angles.  The correct classification was
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89.5 percent (20,679 of 23,097).  The two major parties are clearly separated with the

Democratic Party being split into its Northern and Southern wings.  The 85th Senate

occurred during the height of the three-party system that lasted from the late 1930s to the

late 1970s (Cox and McCubbins, 1993; Poole and Rosenthal, 1997).  The approximate

angle of a party-line vote and the approximate angle of a conservative coalition vote

(Northern Democrats versus a coalition of Southern Democrats and Republicans) are

indicated in the histogram of the cutting line angles.  The second dimension picked up the

split in the Democratic Party over race-related issues.

_________________
 Figure 6 about Here
_________________

Table 8 shows bootstrapped standard errors for the 98 Senators shown in Figure 6.

There were only 255 roll calls in the 85th Senate with minority percentages of 2.5 percent

or better.  From these, 100 samples of 255 roll calls were drawn, with replacement.  The

non-parametric procedure was run on each of the 100 samples and the standard deviation

of the 100 estimates for each Senator for each dimension was computed.

The results are quite good for the first dimension.  Eighty of 98 Senators have

standard deviations of less than .10.  The standard deviations for the second dimension are

larger reflecting the fact that the bulk of the cutting lines are between 60 and 120 degrees

(see Figure 6).  Even so, 72 of 98 Senators have standard deviations of less than .15,

which is small relative to the 2-unit diameter of the space.  The standard deviations tend to

be larger for those Senators near the rim of the space.

__________________
Table 8 about Here

__________________
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Analyzing Rank Order Data:  The 1968 U.S. National Election Study Feeling

Thermometers

A feeling thermometer measures how warm or cold a person feels towards the

stimulus and the measure ranges from 0 – very cold and unfavorable opinion – to 100 –

very warm and favorable opinion with 50 being a neutral point.  In 1968 respondents were

asked to give feeling thermometer ratings to 12 political figures:  George Wallace, Hubert

Humphrey, Richard Nixon, Eugene McCarthy, Ronald Reagan, Nelson Rockefeller,

Lyndon Johnson, George Romney, Robert Kennedy, Edmund Muskie, Spiro Agnew, and

Curtis LeMay.  A respondent’s thermometer scores can be easily converted to simple rank

orders.  For example, respondent number 4 had the following thermometer scores in the

order of the political figures listed above:

0,  0,  50,  0,  60,  60,  70,  50,  97,  60,  60,  50

which produces the following rank ordering from low to high

2,  2,  5,  2,  8.5,  8.5,  11,  5,  12,  8.5,  8.5,  5

Assume that each of the political figures are “legislators” and each unique pair of

respondents is a pair of policy points.  The “legislators” then vote “yes” for that

respondent who has the “legislator” highest in her rank ordering.  If the ranks are the same

the “vote” is treated as missing data.  This creates a roll call matrix where the legislator

points are the political figures and the cutting lines correspond to pairs of respondents.

Since the number of pairs of respondents is about 50,000, the legislator points can be
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recovered with very high precision.  Note that this can be accomplished without making

the assumption of interpersonal comparison of utility of the respondents.

Because of computer memory limitations, 1200 pairs of respondents were

randomly drawn from the data set.  Only respondents giving a complete set of

thermometer responses were used.  This produced a 12 by 1200 matrix of “roll calls”.

Figure 7 shows the estimated two dimensional configuration.

__________________
 Figure 7 about Here

__________________

These data have been analyzed by variety of scaling techniques (Weisberg and

Rusk, 1970; Wang, Schonemann, and Rusk, 1975; Rabinowitz, 1976; Cahoon, Hinich, and

Ordeshook, 1978; Poole and Rosenthal, 1984).  The configuration shown in Figure 7 is

essentially the same as recovered by the other methods.  The correct classification was

84.7 percent (11,336 of 13,379).  The locations for the political figures are precisely

estimated.  The maximum distance to a boundary found for any of the 12 points was

0.002.

7.  Conclusion

This paper shows a general non-parametric technique for maximizing the correct

classification of binary choice data.  The motivation for and the primary focus of the

unfolding technique is parliamentary roll call voting data but the procedures that

implement the unfolding can also be applied to a variety of other problems.

Although neither the cutting plane nor the legislative procedure can formally be

shown to converge to the global classification maximum, Monte-Carlo tests show that
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both in fact work very well in practice.  In the presence of error, because of the way that

the cutting plane procedure is operationalized, it almost certainly passes through or very

near to, the classification maximum and the maximum can be recovered from the iteration

record.  The legislator/chooser procedure is guaranteed to converge to a very strong local

maximum.  That is, a local maximum for which the point cannot be moved in any

orthogonal direction and have the correct classifications increase.  When the two

procedures are used together in an alternating framework to analyze binary choice

matrices, their performance is very good.  The Monte-Carlo tests in section 4 and the

empirical applications in section 5 are testimony to this fact.
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Endnotes

                                               
1  This model was first proposed by MacRae (1958) and later developed by Poole and Rosenthal (1997) in
their NOMINATE procedure.

2  The first two dimensions estimated by NOMINATE classify about 85 percent of the roll call choices
during the post World War II period (Poole and Rosenthal ,1997, ch. 2).

3 Greene (p. 659) compared the MSE algorithm with Probit using a data set gathered by Spector and
Mazzeo (1980) that studied a new method of teaching economics.  Greene found that Probit correctly
classified 26 of the 32 observations while the MSE algorithm only classified 22 of the 32 observations.
The cutting plane procedure recovers essentially the same coefficient vector as that shown in Greene (after
normalization) and correctly classifies 28 of 32 observations.

4 Technically, given a matrix of squared distances, double-centering is subtracting from each entry in the
matrix the mean of the row, the mean of the column, and adding the mean of the matrix.  This has the
effect of removing the squared terms from the matrix leaving just the cross-product matrix.  It also
reduces the rank of the matrix by one (see Young and Householder, 1938; Ross and Cliff, 1964).



Table 1A

Monte-Carlo Tests of Cutting Plane Procedure
100 Legislators and 500 Votes (Perfect Data)

(Each Entry Average of 10 Trials, Standard Deviations in Parentheses)

S
Average
Majority
 Margin

Average
Number
of Errors

Average
 Percent
Correctly
Classified

Average
Fit With

True Normal
Vectors

Alla

Average
Fit With

True Normal
Vectors

10% Min.b

2 65.6
(0.7)

4.1
(3.4)

99.99
(0.01)

.998
(.001)

.999
(.000)

3 66.4
(0.5)

4.9
(2.6)

99.99
(0.01)

.996
(.000)

.997
(.000)

4 66.7
(1.0)

4.8
(1.9)

99.99
(0.00)

.992
(.001)

.995
(.001)

5 67.3
(0.7)

6.5
(2.3)

99.99
(0.00)

.989
(.001)

.993
(.000)

6 66.9
(0.7)

7.2
(1.7)

99.99
(0.00)

.984
(.001)

.990
(.000)

7 67.4
(0.7)

5.6
(2.6)

99.99
(0.01)

.979
(.002)

.987
(.001)

8 67.4
(0.7)

5.5
(2.4)

99.99
(0.01)

.975
(.001)

.984
(.001)

9 67.6
(0.5)

6.5
(2.3)

99.99
(0.00)

.970
(.002)

.980
(.001)

10 67.5
(0.8)

6.4
(3.0)

99.99
(0.01)

.964
(.001)

.976
(.001)



Table 1B

Monte-Carlo Tests of Cutting Plane Procedure
500 Votes With Normal, Uniform, and Logit Error

(Each Entry Average of 10 Trials, Standard Deviations in Parentheses)

S P
Average
Percent
Error

Average
Majority
 Margin

Average
Percent

Correctly
Classified

Obs.c

Average
Percent

Correctly
Classified

Trued

Average
Fit With

True Normal
Vectors

Alle

Average
Fit With

True Normal
Vectors

10% Min.f

1 100 24.9
(0.4)

65.9
(0.6)

77.9
(0.2)

91.6
(0.5)

.840
(.035)

.894
(.015)

1 100 15.7
(2.6)

66.5
(0.8)

86.5
(0.6)

94.6
(0.3)

.906
(.026)

.939
(.007)

2 100 25.5
(0.2)

64.1
(0.2)

78.8
(0.3)

90.3
(0.3)

.951
(.004)

.952
(.003)

2 100 15.0
(0.6)

66.4
(0.8)

89.7
(0.5)

94.2
(0.2)

.979
(.004)

.986
(.001)

3 100 25.1
(0.3)

64.8
(0.6)

80.5
(0.4)

88.9
(0.3)

.913
(.008)

.918
(.006)

3 100 14.3
(0.3)

68.0
(0.5)

89.8
(0.2)

93.0
(0.2)

.954
(.004)

.969
(.002)

3 25 14.8
(0.5)

67.6
(0.6)

93.4
(0.6)

88.8
(0.4)

.890
(.011)

.909
(.013)

3 50 14.8
(0.4)

66.8
(0.7)

90.8
(0.4)

91.0
(0.3)

.934
(.008)

.952
(.003)

3 200 14.5
(0.2)

67.2
(0.8)

88.3
(0.2)

94.4
(0.2)

.970
(.002)

.980
(.002)

3 100 15.0g

(0.4)
66.9
(0.7)

89.3
(0.4)

92.4
(0.2)

.960
(.004)

.968
(.002)

3 100 15.4h

(0.5)
68.2
(0.5)

88.9
(0.5)

92.4
(0.3)

.952
(.003)

.965
(.003)



a Average cosine computed between true normal vectors and estimated normal vectors.
a Average cosine computed between true normal vectors and estimated normal vectors for

those roll calls with at least 10 percent or better in the minority.
c Average correct classification of observed roll call data.
d Average correct classification of true roll call data.
e For one dimension, average Spearman correlation between estimated rank order and true

rank order of midpoints.  For more than one dimension, average cosine between estimated

and true normal vectors.
f Average Spearman correlation and average cosine computed between roll calls with at

least 10 percent or better in the minority.
g  Uniform distribution error.
h  Logit distribution error.



Table 2

Case         Ordering        Classification  Limits of α That Correctly
                                 h     a             Project xi(h+1)
________________________________________________________________________
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j ij
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ij
(h) j

ij
(h)

ij
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ij
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j ij

(h)

ij
(a)

ij
(h) j

ij
(h)

ij
(a)

ij
(h)α

7.  -1 < wij(a) < wij(h) < cj < +1   C     C   
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j ij

(h)

ij
(a)

ij
(h) j

ij
(h)

ij
(a)

ij
(h)α
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ij
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ij
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ij
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j ij
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w  -  w
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________________________________________________________________________

1 “C” is correctly classified; “I” is incorrectly classified.



Table 3A
Monte-Carlo Tests of Legislator Procedure

100 Legislators and 500 Votes (Perfect Data)
(Each Entry Average of 10 Trials, Standard Deviations in Parentheses)

S
Average
Majority
 Margin

Average
Number
of Errors

Average
Percent

Correctly
Classified

Average
Worst
Leg.

R-Squarea

Average
Best
Leg.

R-Squareb

2 65.8
(1.1)

0
(0.0)

100
(0.000)

.941
(.023)

.998
(.001)

3 66.6
(0.8)

.4
(0.7)

99.999
(0.001)

.985
(.010)

.998
(.000)

4 66.5
(0.6)

1.6
(1.4)

99.997
(0.002)

.992
(.003)

.998
(.000)

5 67.4
(0.6)

3.2
(2.2)

99.99
(0.004)

.994
(.002)

.998
(.000)

6 67.2
(0.4)

5.7
(3.2)

99.99
(0.006)

.995
(.001)

.998
(.000)

7 67.9
(0.8)

13.7
(5.5)

99.98
(0.01)

.992
(.004)

.998
(.001)

8 67.4
(0.6)

21.0
(6.2)

99.96
(0.01)

.992
(.002)

.997
(.000)

9 67.4
(0.7)

30.7
(6.8)

99.94
(0.01)

.991
(.003)

.996
(.001)

10 67.4
(0.5)

42.6
(12.4)

99.91
(0.02)

.990
(.002)

.996
(.001)



Table 3B

Monte-Carlo Tests of Legislator Procedure
100 Legislators With Normal, Uniform, and Logit Error

(Each Entry Average of 10 Trials, Standard Deviations in Parentheses)

S Q
Average
Percent
Error

Average
Majority
 Margin

Average
Percent

Correctly
Classified

Obs.c

Average
Percent

Correctly
Classified

Trued

Average
Worst
Leg.

R-Square

Average
Best
Leg.

R-Square

1 500 25.4
(0.6)

63.7
(0.6)

77.8
(0.6)

91.3
(0.4)

--- .985
(.002)

1 500 15.9
(0.3)

66.9
(0.6)

86.4
(0.4)

94.4
(0.2)

--- .985
(.012)

2 500 24.4
(0.7)

64.9
(0.3)

79.2
(0.6)

91.3
(0.2)

.967
(.016)

.984
(.006)

2 500 15.2
(0.3)

68.1
(0.7)

87.6
(0.4)

94.2
(0.2)

.971
(.013)

.991
(.003)

3 500 25.5
(0.2)

65.6
(0.5)

78.3
(0.3)

90.1
(0.3)

.943
(.016)

.972
(.008)

3 500 16.2
(0.3)

67.1
(0.6)

86.6
(0.4)

93.4
(0.2)

.968
(.012)

.985
(.003)

3 50 16.2
(0.2)

68.5
(2.1)

90.4
(0.7)

89.6
(0.9)

.725
(.052)

.819
(.018)

3 100 16.1
(0.4)

67.8
(1.1)

88.6
(0.3)

91.2
(0.4)

.835
(.016)

.888
(.018)

3 250 16.1
(0.4)

66.9
(0.8)

87.1
(0.3)

92.7
(0.3)

.930
(.016)

.955
(.008)

3 500 14.8e

(0.5)
67.1
(0.7)

88.0
(0.4)

93.5
(0.2)

.968
(.009)

.982
(.007)

3 500 15.3f

(0.2)
68.1
(0.9)

87.4
(0.3)

93.4
(0.2)

.968
(.011)

.986
(.004)



a R-Squares computed between true and reproduced legislator coordinates.  The number

shown is the average of the worst r-squares across the 10 trials.
b R-Squares computed between true and reproduced legislator coordinates.  The number

shown is the average of the best r-squares across the 10 trials.
c Average correct classification of observed roll call data.
d Average correct classification of true roll call data.
e Uniform distribution error.
f Logit distribution error.



Table 4

Monte-Carlo Tests:  Non-Parametric Unfolding of Binary Choice Matrices
100 Legislators and 500 Votes

(Each Entry Average of 10 Trials, Standard Deviations in Parentheses)

S
Average
Majority
Margin

Average
Number
of Errors

Average
Percent

Correctly
Classified

Average
Worst
Leg.

R-Square

Average
Best
Leg.

R-Squarea

Average
Fit With

True
Normal
Vectors

All

Average
Fit With

True
Normal
Vectors

10% Min.

1 68.2
(1.3)

0
(0.0)

100.00
(0.00)

--- 1.000
(.000)

1.000
(.000)

1.000
(.000)

2 65.2
(0.8)

22.5
(10.2

99.96
(0.02)

.940
(.014)

.979
(.005)

.995
(.002)

.996
(.002)

3 66.0
(1.0)

10.1
(4.0)

99.98
(0.01)

.964
(.016)

.981
(.007)

.991
(.002)

.993
(.002)

4 66.7
(1.2)

6.7
(3.0)

99.99
(0.01)

.967
(.011)

.983
(.004)

.987
(.003)

.990
(.003)

5 66.8
(0.6)

6.5
(3.0)

99.99
(0.01)

.970
(.005)

.980
(.003)

.984
(.001)

.987
(.001)

6 67.0
(0.7)

5.3
(2.5)

99.99
(0.00)

.959
(.006)

.978
(.003)

.978
(.001)

.987
(.001)

7 67.3
(0.6)

6.5
(3.5)

99.99
(0.01)

.961
(.004)

.977
(.003)

.972
(.002)

.979
(.001)

8 67.2
(0.5)

7.5
(2.2)

99.99
(0.00)

.953
(.012)

.976
(.003)

.966
(.002)

.975
(.002)

9 67.8
(0.7)

6.6
(1.3)

99.99
(0.00)

.952
(.008)

.971
(.003)

.960
(.002)

.970
(.003)

10 67.8
(0.8)

6.7
(1.8)

99.99
(0.00)

.943
(.012)

.972
(.003)

.957
(.002)

.966
(.002)

a For s=1, the squared Spearman Rank Correlation is computed between the 100 true and
reproduced legislator ranks.



Table 5
Monte-Carlo Tests:  Non-Parametric Unfolding of Binary Choice

Matrices With Missing Data
(Each Entry Average of 10 Trials, Standard Deviations in Parentheses)

2 Dimensions, 100 Legislators, 500 Votes

Percent
Missing

Average
Percent
Error

Average
Majority
Margin

Percent
Correct
1 Dim.

Percent
Correct
2 Dim.

Percent
Correct
3 Dim.

Percent
Correct
4 Dim

Percent
Correct
5 Dim.

R2

1st
R2

2nd

0 0 65.5
(0.7)

91.4
(0.9)

99.9
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

.982
(.005)

.948
(.005)

20 0 65.5
(0.7)

91.6
(1.5)

99.9
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

.983
(.005)

.949
(.009)

50 0 65.9
(0.8)

91.6
(0.9)

99.9
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

.975
(.005)

.938
(.020)

70 0 66.5
(0.8)

92.1
(0.7)

99.9
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

.964
(.007)

.920
(.013)

0 20.3
(0.6)

64.6
(0.8)

79.3
(0.7)

84.0
(0.4)

85.1
(0.3)

86.0
(0.3)

86.6
(0.3)

.968
(.007)

.953
(.004)

20 20.3
(0.6)

64.8
(0.8)

79.3
(0.8)

84.7
(0.4)

86.0
(0.3)

86.8
(0.3)

87.5
(0.3)

.963
(.005)

.936
(.012)

50 20.3
(0.6)

65.3
(0.8)

80.5
(0.5)

85.9
(0.4)

87.5
(0.3)

88.7
(0.4)

89.5
(0.4)

.949
(.012)

.925
(.012)

70 20.3
(0.6)

66.1
(0.9)

81.1
(0.8)

87.6
(0.5)

89.7
(0.5)

91.3
(0.5)

92.8
(0.5)

.929
(.009)

.915
(.012)

3 Dimensions, 100 Legislators, 500 Votes

Percent
Missing

Average
Percent
Error

Average
Majority
Margin

Percent
Correct
1 Dim.

Percent
Correct
2 Dim.

Percent
Correct
3 Dim.

Percent
Correct
4 Dim

Percent
Correct
5 Dim.

R2

1st
R2

2nd
R2

3rd

0 0 66.7
(0.7)

85.3
(0.4)

92.7
(0.8)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

.985
(.005)

.976
(.009)

.957
(.010)

20 0 66.6
(0.8)

85.5
(0.5)

92.3
(0.9)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

.981
(.002)

.976
(.004)

.958
(.013)

50 0 67.0
(0.7)

85.6
(0.5)

92.9
(0.9)

99.9
(0.0)

100.0
(0.0)

100.0
(0.0)

.962
(.009)

.946
(.013)

.924
(.015)

70 0 68.0
(0.4)

86.3
(0.3)

93.4
(0.8)

99.9
(0.0)

100.0
(0.0)

100.0
(0.0)

.932
(.012)

.911
(.019)

.883
(.022)



0 22.8
(0.0)

61.3
(0.0)

73.8
(0.0)

77.7
(0.0)

81.2
(0.0)

81.9
(0.0)

82.6
(0.0)

.982
(.000)

.980
(.000)

.979
(.000)

20 22.8
(0.0)

61.7
(0.0)

74.1
(0.0)

78.3
(0.0)

81.9
(0.0)

82.6
(0.0)

83.3
(0.0)

.981
(.000)

.977
(.000)

.974
(.000)

50 22.8
(0.0)

62.4
(0.0)

74.9
(0.0)

79.9
(0.0)

83.4
(0.0)

84.3
(0.0)

85.3
(0.0)

.969
(.000)

.966
(.000)

.952
(.000)

70 22.8
(0.0)

63.4
(0.0)

76.4
(0.0)

82.1
(0.0)

85.6
(0.0)

87.1
(0.0)

88.5
(0.0)

.947
(.000)

.938
(.000)

.908
(.000)



Table 6
U.S. Senate:  1947 - 1996

Non-Parametric Unfolding of Roll Call Data

Senate Years Senators Roll Calls
Total

Choices
Average
Margin

Non-P
One

Non-P
Two

kyst
R 1st

kyst
R 2nd

nom
R 1st

nom
R 2nd

104 1995-96 103a 805b 78,882c .637 90.0d 91.3 .985e .656 .980f .785
103 1993-94 101 647 63,023 .672 89.2 90.4 .984 .744 .983 .818
102 1991-92 102 481 46,208 .685 86.9 88.5 .983 .812 .979 .879
101 1989-90 101 499 48,649 .680 85.4 87.1 .990 .860 .985 .884
100 1987-88 101 635 59,631 .709 87.7 89.5 .981 .722 .981 .925
99 1985-86 101 661 63,104 .688 84.7 86.8 .994 .841 .976 .936
98 1983-84 101 578 53,330 .698 84.8 87.3 .990 .900 .979 .954
97 1981-82 101 818 77,672 .682 85.5 88.1 .995 .897 .987 .956
96 1979-80 101 928 82,937 .683 83.5 85.8 .988 .803 .988 .965
95 1977-78 104 1037 92,868 .691 84.5 86.4 .989 .757 .977 .864
94 1975-76 100 1144 100,328 .691 86.3 88.6 .990 .888 .982 .934
93 1973-74 101 983 87,699 .695 85.1 87.5 .993 .908 .991 .961
92 1971-72 102 783 68,588 .676 85.0 88.6 .991 .944 .981 .971
91 1969-70 102 557 49,219 .681 84.5 88.1 .991 .898 .984 .973
90 1967-68 101 518 46,081 .699 83.6 87.2 .988 .899 .988 .949
89 1965-66 102 441 40.618 .681 85.4 88.4 .988 .901 .975 .912
88 1963-64 102 505 47,797 .686 85.0 90.1 .974 .963 .913 .937
87 1961-62 105 400 38,189 .675 87.3 90.6 .947 .960 .963 .933
86 1959-60 103 360 33,855 .686 84.9 89.6 .976 .962 .963 .956
85 1957-58 98 255 23,097 .669 84.7 89.5 .982 .924 .974 .895
84 1955-56 99 184 16,798 .659 85.5 90.4 .980 .927 .975 .925
83 1953-54 103 242 20,991 .672 86.9 90.3 .949 .731 .950 .906
82 1951-52 96 208 17,368 .659 86.0 89.4 .961 .769 .977 .928
81 1949-50 102 447 38,074 .667 85.0 88.6 .969 .862 .957 .955
80 1947-48 97 237 20,321 .665 88.0 90.8 .970 .885 .961 .917

a Number of Senators may exceed two times the number of States because of within
Congress replacements.
b Number of roll calls with at least 2.5% voting, paired, or announced, on losing side.
c Total choices may not equal number of Senators times number of roll calls because of
non-voting due to absences, etc..
d Classifications from non-parametric unfolding algorithm.
e Squared Pearson correlation between Senator coordinates from KYST and Senator
coordinates from non-parametric unfolding.  Non-parametric unfolding configuration
rotated to best match KYST configuration.
f Squared Pearson correlation between Senator coordinates from W-NOMINATE and
Senator coordinates from non-parametric unfolding.  Non-parametric unfolding
configuration rotated to best match W-NOMINATE configuration.



Table 7

104th (1995-96) U.S. Senate

Name Rank Name Rank Name Rank

Simon (D-IL) 1 Baucus (D-MT) 45 Dole (R-KS) 89
Wellstone (D-MN) 2 Nunn (D-GA) 46 Lott (R-MS) 90
Feingold (D-WI) 3 Heflin (D-AL) 47 Craig (R-ID) 91
Wyden (D-OR) 4 Campbell (D-CO) 48 Kempthorne (R-ID) 92
Boxer (D-CA) 5 Jeffords (R-VT) 49 Grams (R-MN) 93

Kennedy (D-MA) 6 Cohen (R-ME) 50 Nickles (R-OK) 94
Moseley-Braun (D-IL) 7 Specter (R-PA) 51 Smith (R-NH) 95

Levin (D-MI) 8 Snowe (R-ME) 52 McCain (R-AZ) 96
Bradley (D-NJ) 9 Chafee (R-RI) 53 Ashcroft (R-MO) 97

Lautenberg (D-NJ) 10 Hatfield (R-OR) 54 Inhofe (R-OK) 98
Leahy (D-VT) 11 Campbell (R-CO) 55 Gramm (R-TX) 99

Murray (D-WA) 12 Kassebaum (R-KS) 56 Helms (R-NC) 100
Bumpers (D-AR) 13.5 Packwood (R-OR) 57 Faircloth (R-NC) 101

Harkin (D-IA) 13.5 Simpson (R-WY) 58 Brown (R-CO) 102
Pell (D-RI) 15 Roth (R-DE) 59 Kyl (R-AZ) 103

Kerry (D-MA) 16 Stevens (R-AK) 60
Pryor (D-AR) 17 Gorton (R-WA) 61

Moynihan (D-NY) 18 D’Amato (R-NY) 62
Kohl (D-WI) 19 Dewine (R-OH) 63

Sarbanes (D-MD) 20 Domenici (R-NM) 64
Rockefeller (D-WV) 21 Lugar (R-UT) 65

Akaka (D-HI) 22 Bond (R-MO) 66
Daschle (D-SD) 23 Cochran (R-MS) 67
Dodd (D-CT) 24 Murkowski (R-AK) 68

Mikulski (D-MD) 25 Warner (R-VA) 69
Glenn (D-OH) 26 Pressler (R-SD) 70

Conrad (D-ND) 27 Bennett (R-UT) 71
Dorgan (D-ND) 28 Frist (R-TN) 72

Bingaman (D-NM) 29 Santorum (R-PA) 73
Biden (D-DE) 30 Shelby (R-AL) 74
Byrd (D-WV) 31 Burns (R-MT) 75
Kerrey (D-NE) 32 Hatch (R-UT) 76
Bryan (D-NV) 33 Abraham (R-MI) 77

Graham (D-FL) 34 Gregg (R-NH) 78
Feinstein (D-CA) 35 Thompson (R-TN) 79
Hollings (D-SC) 36 Grassley (R-IA) 80
Inouye (D-HI) 37 Thurmond (R-SC) 81
Ford (D-KY) 38 McConnell (R-KY) 82
Reid (D-NV) 39 Hutchison (R-TX) 83.5
Robb (D-VA) 40 Thomas (R-WY) 83.5
Exon (D-NE) 41 Frahm (R-KS) 85

Lieberman (D-CT) 42 Mack (R-FL) 87
Breaux (D-LA) 43 Coverdell (R-GA) 87

Johnston (D-LA) 44 Coats (R-IN) 87



Table 8
Distribution of Bootstrap Standard Errors for Senators, 85th Senate

Range of Bootstrap
Standard Errors

Number of Senators
First Dimension

Number of Senators
Second Dimension

.00 - .05 13 0

.05 - .10 67 36

.10 - .15 14 36

.15 - .20 2 17

.20 - .25 2 4

.25 - .30 0 5
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Figure 2.  Calculating Correct Classification

Actual Voting Pattern

       Y   Y   Y   Y   Y   Y   . . . .  Y   Y * N   Y * N   Y * N   N . . .N    N
   ___________________________________________________________
-1.0  w1  w2  w3  w4      . . . . . . .  0.0             . . . . . . .             wp-1   wp  +1.0

Perfect Voting Patterns

(-1 , w1)  produces  nnnnnnnnn.....nn or yyyyyyyyy.....yy
(w1 , w2)  produces  ynnnnnnnn.....nn or nyyyyyyyy.....yy
(w2 , w3)  produces  yynnnnnnn.....nn or nnyyyyyyy.....yy
(w3 , w4)  produces  yyynnnnnn.....nn or nnnyyyyyy.....yy

etc.

(wp-1 , wp)  produces yyyyyyyyy.....yn or nnnnnnnnn.....ny
(wp   , +1)  produces yyyyyyyyy.....yy or nnnnnnnnn.....nn
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Figure 3C.  Cutting Plane Example
10th Estimate of Cutting Plane
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Figure 3C.  Cutting Plane Example
10th Estimate of Cutting Plane
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Figure 4A.  Error Example
78 Errors With True Cutting Line
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Figure 4A.  Error Example
78 Errors With True Cutting Line
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Figure 4B.  Error Example
73 Errors at 10th Estimate (Minimum)
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Figure 4B.  Error Example
73 Errors at 10th Estimate (Minimum)
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Figure 4C.  Error Example
73 Errors at 20th Estimate (Minimum)
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Figure 4C.  Error Example
73 Errors at 20th Estimate (Minimum)
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Figure 4D.  Error Example
75 Errors at 30th Estimate (Converged)
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Figure 5.  Legislator Example: nnnyn
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Figure 6A.  85th Senate 1957-58
Senator Locations
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Example


